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Preface

This book is based on a series of lectures given over the recent years in Mas-
ter’s courses in probability. It provides a short, self-contained introduction
to the ergodic theory of Markov chains in metric spaces.

Although primarily intended for graduate and postgraduate students, cer-
tain chapters (e.g. one and two) can be taught at the undergraduate level.
Others (e.g. four and five) can be used as complements to courses in measure
or ergodic theory. Basic knowledge in probability, measure theory, and calcu-
lus is recommended. A certain familiarity with discrete-time martingales is
also useful, but the few results from martingale theory used in this book are
all recalled in the appendix. Each chapter contains several exercises ranging
from simple applications of the theory to more advanced developments and
examples.

Whether in physics, engineering, biology, ecology, economics or elsewhere,
Markov chains are frequently used to describe the random evolution of com-
plex systems. The understanding and analysis of these systems requires, first
of all, a good command of the mathematical techniques that allow to explain
the long-term behavior of a general Markov chain living on a (reasonable)
metric space. Presenting these techniques is, briefly put, our main objective.
Questions that are central to this book and that will be recurrently visited
are: under which conditions does such a chain have an invariant probability
measure? If such a measure exists, is it unique? Does the empirical occupa-
tion measure of the chain converge? Does the law of the chain converge, and
if so, in which sense and at which rate?

There are a variety of tools to address these questions. Some rely on
purely measure-theoretic concepts that are natural generalizations of the ones
developed for countable chains (i.e. chains living on countable state spaces).
This includes notions of irreducibility, recurrence (in the sense of Harris),
petite and small sets, etc. Other tools assume topological properties of the
chain such as the strong Feller or asymptotically strong Feller property (in
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the sense of Hairer and Mattingly). However, when dealing with a specific
model, measure-theoretic conditions - such as irreducibility - might be dif-
ficult to verify, and strong topological properties - such as the strong Feller
condition - are seldom satisfied. A powerful approach is then to combine
much weaker topological conditions - such as the (weak) Feller condition -
with controllability properties of the system to prove that certain measure-
theoretic conditions (e.g. irreducibility, existence of petite or small sets) are
satisfied. This approach is largely developed here and is a key feature of this
book.

The book is organized in eight chapters and a short appendix. Chapter 1
briefly defines Markov chains and kernels and gives their very first properties,
the Markov and strong Markov properties. The end of the chapter gives a
concise introduction to Markov chains in continuous time, also called Markov
processes, as they appear in many examples throughout the book.

Chapter 2 is a self-contained mini course on countable Markov chains.
Classical notions of recurrence (positive and null) and transience are intro-
duced. These are powerful notions, but when students meet them for the
first time and have to verify that a specific chain is either recurrent or tran-
sient, they are often disoriented. Thus, we have chosen to spend some time
here to show how theses properties can be verified "in practice" with the help
of suitable Lyapunov functions. We also explain how Lyapunov functions can
be used to provide estimates on the moments (polynomial and exponential)
of hitting times for a point or a finite set.

Certainly one of the most important results in the theory of countable
chains is the ergodic theorem, which asserts that - for positive recurrent ape-
riodic chains - the law of the chain converges to a unique distribution. The
final three sections of Chapter 2 are organized around this result. We first
prove it quickly - by standard coupling - without any estimate on the rate
of convergence. Then, the Lyapunov method is applied to investigate the
behavior of renewal processes and provide short proofs of coupling theorems
for these processes. Finally, relying on these coupling results, we revisit the
ergodic theorem, this time with some convergence rates.

On uncountable state spaces, the simplest (and also the most natural) ex-
amples of Markov chains are given by random dynamical systems (also called
random iterative systems). These are systems such that the state variable at
time n+1 is a deterministic function of the state variable at time n and a "ran-
dom" input sampled from a sequence of i.i.d. random variables. Chapter 3 is
devoted to this type of chains and explains how any given "abstract" Markov
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chain can be represented by a random dynamical system. Some interesting
examples (Bernoulli convolutions, Propp-Wilson algorithm) are presented in
exercises.

Chapter 4 starts with a detailed section on weak convergence, tightness
and Prohorov’s theorem. Then, invariant probability measures are defined and
it is shown that, for a Feller chain, weak limit points for the family of empiri-
cal occupation measures are almost surely invariant probability measures. We
discuss some practical tightness criteria (for the empirical occupation mea-
sures) based on Lyapunov functions. At this stage of the book, the reader
understands that, under a reasonable control of the chain at infinity (obtained
for instance by a Lyapunov function), uniqueness of the invariant probability
measure equates stability: the empirical occupation measures converge almost
surely to some (unique) distribution, regardless of the initial distribution. So
we found it was a good place to discuss simple examples of uniquely ergodic
chains (i.e. chains having a unique invariant probability measure). This is
done in the third section of Chapter 4, where we analyze random dynamical
systems obtained by random composition of contractions (or mappings that
contract on average). The penultimate section of the chapter is devoted to er-
godic theorems. We first prove several classical results (Poincaré recurrence
theorem, Birkhoff ergodic theorem, and the ergodic decomposition theorem)
and then show how they can be applied to Markov chains. Finally, we discuss
invariant measures of continuous-time processes and explain how their prop-
erties (existence, ergodicity, uniqueness, ergodic decomposition, etc.) can be
studied using discrete-time theory.

Chapter 5 is devoted to various notions of irreducibility which ensure
unique ergodicity. We start with the measure-theoretic notion of irreducibility
(also called ψ irreducibility) and then move on to more topological conditions.
The accessible set of a Feller chain is introduced and its relations with the
support of invariant probability measures are investigated. We then consider
strong Feller chains and prove that for such chains ergodic probability mea-
sures have disjoint support. We also prove the Hairer-Mattingly theorem,
which says that the same property holds under the weaker assumption that
the chain is asymptotically strong Feller. These results have the useful conse-
quence that, on a connected set, if there is an invariant probability measure
having full support, the chain is uniquely ergodic.

We then discuss in Chapter 6 the notions of petite sets, small sets and
(weak) Doeblin points and show that the existence of an accessible weak Doe-
blin point implies irreducibility for (weak) Feller chains. This latter result is
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then applied to a variety of examples both in discrete time (random dynamical
systems, random dynamical systems obtained by random switching between
deterministic flows) and in continuous time (piecewise deterministic Markov
processes, stochastic differential equations). This gives us the opportunity
to show how the accessibility condition is naturally expressed as a control
problem and how the Doeblin properties are naturally related to HÃűrman-
der type conditions (for random switching models, piecewise deterministic
Markov processes and SDEs).

Chapter 7 introduces Harris recurrence. For uniquely ergodic chains, Har-
ris recurrence equates to positive recurrence, meaning that for every bounded
Borel (and not merely for every continuous) function, the Birkhoff averages
of the function converge almost surely. We prove the important result that
Harris recurrence (respectively positive recurrence) is implied by the existence
of a recurrent petite set (respectively a petite set whose first return time is
bounded in L1). We also discuss simple useful criteria (relying on Lyapunov
functions) ensuring that a set is recurrent and provide moment estimates on
the return times.

Chapter 8 revolves around the celebrated Harris ergodic theorem. After
revisiting the notions of total variation distance and coupling for two prob-
ability measures, we state a simple version of the Harris ergodic theorem
where the entire state space is a petite set. Under this strong hypothesis, one
has exponential convergence in total variation distance to the unique invari-
ant probability measure. The same conclusion holds under the existence of
a Lyapunov function that forces the Markov chain to enter a certain small
set - a condition that is better adapted to noncompact state spaces, which
are usually not petite. We give two different proofs for this latter version
of Harris’s ergodic theorem: first the recent proof by Hairer and Mattingly
based on the ingenious construction of a semi-norm for which the Markov
operator is a contraction. And second, a more classical proof using coupling
arguments and ideas from renewal theory. More precisely, under uniform esti-
mates on polynomial (respectively exponential) moments for the return times
to an aperiodic and recurrent small set, we obtain polynomial (respectively
exponential) convergence in total variation distance to the unique invariant
probability measure. Finally, we present a condition, also due to Hairer and
Mattingly, that yields exponential convergence to the unique invariant prob-
ability measure in a certain Wasserstein distance.

The appendix recalls the monotone class theorem and the few results from
discrete time martingales that are used in the book.
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Preliminaries

The general setting is the following. Throughout all this book, we let
M denote a separable (there exists a countable dense subset) metric space
with metric d (e.g., R, Rn) equipped with its Borel σ-field B(M). We let
B(M) (respectively Cb(M)) denote the set of real-valued bounded measurable
(respectively bounded continuous) functions on M equipped with the norm

‖f‖∞ := sup
x∈M
|f(x)|. (1)

If µ is a (non-negative) measure onM and f ∈ L1(µ) (or f ≥ 0 measurable),
we let

µf :=

∫
M

f(x) µ(dx)

denote the integral of f with respect to µ. The rest of the notation is intro-
duced in the main body of the text. Please also refer to the list of symbols
at the end of the book.



Chapter 1

Markov Chains

This chapter introduces the basic objects of the book: Markov kernels and
Markov chains. The Chapman Kolmogorov equation which characterizes the
evolution of the law of a Markov chain, as well as the Markov and strong
Markov properties are established. The last section briefly defines continuous
time Markov processes.

1.1 Markov kernels

A Markov kernel on M is a family of measures

P = {P (x, ·)}x∈M

such that

(i) For all x ∈M, P (x, ·) : B(M)→ [0, 1] is a probability measure;

(ii) For all G ∈ B(M), the mapping x ∈M 7→ P (x,G) ∈ R is measurable.

The Markov kernel P acts on functions g ∈ B(M) and measures (respectively
probability measures) according to the formulae:

Pg(x) :=

∫
M

P (x, dy)g(y), (1.1)

µP (G) :=

∫
M

µ(dx)P (x,G). (1.2)

13
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Remark 1.1 For all g ∈ B(M), we have Pg ∈ B(M) and ‖Pg‖∞ ≤ ‖g‖∞.
Boundedness is immediate and measurability easily follows from the condition
(ii) defining a Markov kernel (use for example the monotone class theorem
from the appendix).

Remark 1.2 The term Pg(x) can also be defined by (1.1) for measurable
functions g : M → R that are nonnegative, but not necessarily bounded. For
such g, Pg(x) is an element of [0,∞]. This will play a role in the study of
Lyapunov functions starting in Section 2.3.

We let P n denote the operator recursively defined by P 0g := g and
P n+1g := P (P ng) for n ∈ N. Or, equivalently,

P 0(x, ·) := δx and P n+1(x,G) :=

∫
M

P n(x, dy)P (y,G)

for all n ∈ N and for all G ∈ B(M). Here and throughout these notes, N
is the set of nonnegative integers (including 0). The set of positive integers
(excluding 0) will be denoted by N∗.

Example 1.3 (countable space) SupposeM is countable. We can turnM
into a separable (and complete) metric space by endowing it with the discrete
metric d(x, y) = 1x 6=y. The corresponding Borel σ-field is the collection of all
subsets ofM . A Markov transition matrix onM is a map P : M×M → [0, 1]
such that ∑

y∈M

P (x, y) = 1

for all x ∈M. This gives rise to a Markov kernel Q defined by

Q(x,G) :=
∑
y∈G

P (x, y)

for all G ⊂M. Since there is a one-to-one correspondence between transition
matrices and kernels onM , we shall identify P with Q and refer to it at times
as a transition matrix and at times as a kernel.

1.2 Markov chains
In order to define Markov chains, we first need to introduce the (classical)
notions of filtration and adapted processes. Let (Ω,F ,P) be a proba-
bility space. A filtration F = (Fn)n≥0 is an increasing sequence of σ-fields:
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Fn ⊂ Fn+1 ⊂ F for all n ∈ N. The data (Ω,F ,F,P) is called a filtered prob-
ability space. An M -valued adapted stochastic process on (Ω,F ,F,P) is a
family (Xn)n≥0 of random variables defined on (Ω,F ,P), taking values in M
and such that Xn is Fn−measurable for all n ∈ N. If X = (Xn)n≥0 is a family
of random variables on (Ω,F ,P), the canonical filtration of X is the filtra-
tion FX = {FXn }n≥0 where FXn = σ(X0, . . . , Xn) is the σ-field generated by
X0, . . . , Xn. With such a definition X is always an adapted stochastic process
on (Ω,F ,FX ,P).

We can now define what a Markov chain is. Given a filtered probability
space (Ω,F ,F,P) and a Markov kernel P on M, a Markov chain with ker-
nel P with respect to F is an M -valued adapted stochastic process (Xn) on
(Ω,F ,F,P) such that

P(Xn+1 ∈ G|Fn) = P (Xn, G)

for all n ∈ N and for all G ∈ B(M). Equivalently,

E(g(Xn+1)|Fn) = Pg(Xn)

for all n ∈ N and for all g ∈ B(M) (or all functions g : M → R that are
measurable and nonnegative). Here, E(·|Fn) denotes conditional expectation
with respect to Fn, and P(Xn+1 ∈ G|Fn) := E(1Xn+1∈G|Fn). In the appendix,
we recall the definition of conditional expectation and list some of its basic
properties, which will be used without further comment throughout the text.

Proposition 1.4 Let (Xn) be a Markov chain with kernel P with respect to
F. Then (Xn) is always a Markov chain with kernel P with respect to FX .
This latter property is equivalent to

E(g(Xn+1)h0(X0)...hn(Xn)) = E(Pg(Xn)h0(X0)...hn(Xn))

for all n ∈ N, h0, . . . , hn ∈ B(M), and g ∈ B(M).

Proof Suppose that (Xn) is a Markov chain with kernel P with respect to
F. Since FXn ⊂ Fn,

E(g(Xn+1)|FXn ) = E(E(g(Xn+1)|Fn)|FXn ) = Pg(Xn).

This proves the first statement. Multiplying the left hand side and right hand
side of this equality by h0(X0)...hn(Xn) QED
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Remark 1.5 In view of Proposition 1.4, when we say that (Xn) is a Markov
chain with kernel P , we implicitly mean that it is a Markov chain with respect
to FX .

Proposition 1.6 (Chapman-Kolmogorov Equation) Let (Xn) be a Markov
chain with kernel P. Let µn denote the law of Xn. Then, for every n ∈ N,

µn+1 = µnP = µ0P
n+1.

Proof For every g ∈ B(M),

µn+1g = E(g(Xn+1)) = E(E(g(Xn+1)|Fn)) = E(Pg(Xn)) = µnPg.

QED

Example 1.7 (countable space) Let (Xn) be a Markov chain on a count-
able state space M , with transition matrix P and initial distribution µ0. The
law µn of the random variable Xn then satisfies

µn({x}) =
∑
y∈M

µ0({y})P n(y, x), ∀x ∈M,

where P n is the nth power of the matrix P . In matrix-vector notation, this
identity can be written as

µn = µ0P
n,

where µn and µ0 are row vectors. In particular, if µ0 is the Dirac measure at
a point y ∈ M , then the law of Xn assigns mass P n(y, x) to every singleton
{x}, i.e.,

P(Xn = x|X0 = y) = P n(y, x).

Feller and strong Feller chains

The Markov kernel P (or the associated Markov chain (Xn)) is said to be
Feller if it takes bounded continuous functions into bounded continuous func-
tions. It is said to be strong Feller if it takes bounded Borel functions into
bounded continuous functions. If M is countable and equipped with the dis-
crete metric, then every function on M is continuous. In particular, every
Markov kernel on a countable set is strong Feller.
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1.3 The canonical chain

Let X = (Xn)n≥0 be a Markov chain with kernel P. Then X can be seen as
a random variable on (Ω,F ,P) taking values in the space of trajectories

MN := {x = (xi)i∈N : xi ∈M}

equipped with the product σ-field B(M)⊗N (see Exercise 1.9).
If X0 has law ν, we let Pν denote the law of X. That is the image measure

of P by X. In particular, for all Borel sets A0, . . . , Ak ⊂M ,

P(X0 ∈ A0, . . . , Xk ∈ Ak) = Pν{x ∈MN : (x0, . . . , xk) ∈ A0×. . .×Ak} (1.3)

We let Eν denote the corresponding expectation. If ν is the Dirac measure
at x, we use the standard notation Px := Pδx and Ex := Eδx .

Proposition 1.8 (i) Let X = (Xn)n≥0 be a Markov chain with kernel P and
initial distribution ν. Then for all Borel sets A0, . . . , Ak ⊂M ,

Pν{x ∈MN : (x0, . . . , xk) ∈ A0 × . . .× Ak} =∫
A0

ν(dx0)

∫
A1

P (x0, dx1) . . .

∫
Ak

P (xk−1, dxk). (1.4)

(ii) Let Ω = MN, and let F = B(M)⊗N. Given a probability measure ν and a
Markov kernel P on M , there exists a unique probability measure Pν on
(Ω,F) characterized by (1.4). On (Ω,F), the process (Xn)n≥0 defined
by Xn(x) = xn, is a Markov chain with kernel P and initial law ν,
called the canonical chain.

Proof Given k ∈ N and h0, . . . , hk ∈ B(M), we let h0⊗ . . .⊗ hk denote the
map on MN defined as

h0 ⊗ . . .⊗ hk(x) := h0(x0) . . . hk(xk).

For further reference such a map will be called a product map of length k+ 1.
Then

E(h0(X0) . . . hk(Xk)) = Eν(h0 ⊗ . . .⊗ hk)
= Eν(h0 ⊗ . . .⊗ hk−1Phk) = ν[h0P [h1P [. . . hk−1Phk] . . .]]. (1.5)
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The first equality is by definition of Eν . The second equality follows from
Proposition 1.4 and the last one follows from the second one by induction on
k. This proves the first statement.

The existence of a unique probability measure Pν on (Ω,F) characterized
by (1.4) is the celebrated Ionescu-Tulcea theorem (see, e.g., Theorem 2 in
Chapter II.9 of [63]). Using the result from Exercise 1.9, it is not hard to
check that the canonical process (Xn) is a Markov chain on the filtered prob-
ability space (Ω,F ,FX ,Pν), with initial distribution ν and kernel P . QED

Exercise 1.9 Let B(Mn) (respectively B(MN)) denote the Borel σ-field over
Mn (respectively MN, endowed with the product topology). Let B(M)⊗n

(respectively B(M)⊗N) denote the product σ-field overMn (respectivelyMN).
Show that B(M)⊗n = B(Mn) and B(M)⊗N = B(MN).

Hint: For the inclusion ⊂ one can use the fact that the projection πi :
MN →M,x 7→ xi is continuous, hence measurable. Observe that this doesn’t
require the separability of M. For the converse implication, one can first
show, using separability, that every open subset of Mn is a countable union
of product sets O1 × . . .×On with Oi open.

1.4 Markov and strong Markov properties
For n ∈ N, we let Θn : MN →MN denote the shift operator defined by

Θn(x) := (xn+k)k≥0.

The following proposition known as the Markov property easily follows
from the definitions.

Proposition 1.10 (Markov Property) Let H : MN → R be a nonnegative
or bounded measurable function and X a Markov chain with kernel P. Then

E(H(Θn ◦X)|Fn) = EXn(H).

Proof Assume without loss of generality that H is bounded. Indeed, if H
is non-negative and unbounded, there is an increasing sequence of bounded
non-negative functions that converges pointwise to H, and one can apply the
monotone convergence theorem. The set of boundedH satisfying the required
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property is a vector space, containing the constant functions and closed under
bounded monotone convergence. Therefore, by the monotone class theorem
(given in the appendix) and by Exercise 1.9, it suffices to check the property
when H = h0 ⊗ . . .⊗ hk is a product map. We proceed by induction on k. If
k = 0, this is immediate. If the property holds for all product maps of length
k + 1, then

E(h0(Xn) . . . hk(Xn+k)hk+1(Xn+k+1)|Fn)

= E(h0(Xn) . . . hk(Xn+k)E(hk+1(Xn+k+1)|Fn+k)|Fn)

= E(h0(Xn) . . . hk(Xn+k)Phk+1(Xn+k)|Fn) = EXn(h0 ⊗ . . .⊗ hkPhk+1).

By (1.5), this last term equals EXn(h0 ⊗ . . .⊗ hk+1). QED

A stopping time on a filtered probability space (Ω,F ,F,P) is a random
variable T : Ω → N ∪ {∞} such that for all n ∈ N, the event {T = n} =
T−1({n}) lies in Fn. The σ-field generated by T , denoted FT , is the σ-field
consisting of all events A ∈ F such that

A ∩ {T = n} ∈ Fn, ∀n ∈ N.

Exercise 1.11 (i) Show that FT is indeed a σ-field.

(ii) Let (Tn)n∈N be a sequence of stopping times on a filtered probability
space (Ω,F ,F,P) such that Tn ≤ Tn+1 for every n ∈ N. Show that
An := FTn , n ∈ N, defines a filtration on (Ω,F ,P).

The following proposition generalizes Proposition 1.10.

Proposition 1.12 (Strong Markov Property) Let H : MN → R be a
nonnegative or bounded measurable function, X a Markov chain, and T a
stopping time living on the same filtered probability space as X. Then

E(H(ΘT ◦X)|FT )1T<∞ = EXT (H)1T<∞.

Proof It suffices to show that for all n ∈ N,

E(H(Θn ◦X)1T=n|FT ) = EXn(H)1T=n.

The right-hand side is FT -measurable, and for all A ∈ FT ,

E(H(Θn ◦X)1T=n1A) = E(EXn(H)1T=n1A)

by the Markov property (because 1T=n1A is Fn-measurable). This proves the
result. QED
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1.5 Continuous time: Markov Processes
Although this book is about Markov chains in discrete time, it is useful to
say a few words about Markov chains in continuous time, also called Markov
processes, because they appear in many examples throughout the book. The
definitions are modeled on discrete time.

A Markov semigroup on M is a family {Pt}t≥0 of Markov kernels on M
such that

(i) P0(x, ·) = δx;

(ii) For all G ∈ B(M), the mapping (t, x)→ Pt(x,G) is measurable;

(iii) For all t, s ≥ 0, Pt+s = Pt ◦ Ps.

Let (Ω,F ,P) be a probability space and let F = (Ft)t≥0 be a continuous-time
filtration, i.e., a family of σ-fields such that Fs ⊂ Ft ⊂ F for all 0 ≤ s ≤ t.
An M -valued adapted stochastic process on (Ω,F ,F,P) is a family (Xt)t≥0 of
random variables defined on (Ω,F ,P), taking values in M and such that Xt

is Ft-measurable for all t ≥ 0.
A Markov process with semigroup {Pt}t≥0 with respect to F is an adapted

stochastic process X = (Xt)t≥0 on (Ω,F ,F,P) such that for all g ∈ B(M)
and t, s ≥ 0,

E(g(Xt+s)|Ft) = (Psg)(Xt).

Exercise 1.13 Suppose M is countable. Let (Yn) be a Markov chain on
M with kernel P. Let U1, U2, . . . be a sequence of independent identically
distributed random variables on (0,∞) having an exponential distribution of
parameter λ, i.e., P(Ui > t) = e−λt. Set T0 = 0 and Tn = U1 + . . . + Un for
n ≥ 1. Let (Xt)t≥0 be the continuous-time process defined by Xt = Yn for
Tn ≤ t < Tn+1. Show that (Xt) is a Markov process with semigroup

Pt = e−λteλtP := e−λt
∑
k≥0

(λt)kP k

k!
.

Feller processes

We use the following terminology. We say that the Markov semigroup {Pt}t≥0

is weak Feller provided that

(i) Pt(Cb(M)) ⊂ Cb(M) for all t ≥ 0;
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(ii) For all f ∈ Cb(M) and x ∈M , limt↓0 Ptf(x) = f(x).

This definition implies that Pt is Feller for all t ≥ 0. Observe however that it
is weaker than the usual definition of a Feller semigroup (see, e.g., [26], [59]
or [45]), which assumes that

(i) M is a locally compact metric space;

(ii) {Pt}t≥0 is a strongly continuous semigroup on C0(M) (the set of contin-
uous functions vanishing at infinity), meaning that

(a) Pt(C0(M)) ⊂ C0(M);

(b) For all f ∈ C0(M), limt↓0 ‖Ptf − f‖∞ = 0.

Remark 1.14 It is proved in [59, Proposition 2.4] that [(a), (b)] above is
equivalent to [(a), (b)′] where (b)′ is given by the (seemingly) weaker condition
that

lim
t↓0

Ptf(x) = f(x)

for all f ∈ C0(M) and x ∈ M. As shown by the following exercise, this
equivalence does not hold if C0(M) is replaced by Cb(M).

Exercise 1.15 Let M = (0,∞), and let Pt be defined on B(M) as

Ptf(x) = f

(
xet

1 + x(et − 1)

)
.

Show that {Pt}t≥0 is a weak Feller Markov semigroup which is not Feller.

For copyright reasons, this preview only includes the table of
contents, the preface, and the first chapter of the book.
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